Text Region Extraction from Business Card Images for Mobile Devices

نویسندگان

  • Ayatullah Faruk Mollah
  • Subhadip Basu
  • Nibaran Das
  • Ram Sarkar
  • Mita Nasipuri
  • Mahantapas Kundu
چکیده

Designing a Business Card Reader (BCR) for mobile devices is a challenge to the researchers because of huge deformation in acquired images, multiplicity in nature of the business cards and most importantly the computational constraints of the mobile devices. This paper presents a text extraction method designed in our work towards developing a BCR for mobile devices. At first, the background of a camera captured image is eliminated at a coarse level. Then, various rule based techniques are applied on the Connected Components (CC) to filter out the noises and picture regions. The CCs identified as text are then binarized using an adaptive but light-weight binarization technique. Experiments show that the text extraction accuracy is around 98% for a wide range of resolutions with varying computation time and memory requirements. The optimum performance is achieved for the images of resolution 1024x768 pixels with text extraction accuracy of 98.54% and, space and time requirements as 1.1 MB and 0.16 seconds respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binarizing Business Card Images for Mobile Devices

Business card images are of multiple natures as these often contain graphics, pictures and texts of various fonts and sizes both in background and foreground. So, the conventional binarization techniques designed for document images can not be directly applied on mobile devices. In this paper, we have presented a fast binarization technique for camera captured business card images. A card image...

متن کامل

Segmentation of Camera Captured Business Card Images for Mobile Devices

Due to huge deformation in the camera captured images, variety in nature of the business cards and the computational constraints of the mobile devices, design of an efficient Business Card Reader (BCR) is challenging to the researchers. Extraction of text regions and segmenting them into characters is one of such challenges. In this paper, we have presented an efficient character segmentation t...

متن کامل

Text/Graphics Separation and Skew Correction of Text Regions of Business Card Images for Mobile Devices

Separation of the text regions from background texture and graphics is an important step of any optical character recognition system for the images containing both texts and graphics. In this paper, we have presented a novel text/graphics separation technique and a method for skew correction of text regions extracted from business card images captured with a cell-phone camera. At first, the bac...

متن کامل

Text/Graphics Separation for Business Card Images for Mobile Devices

Separation of the text regions from background texture and graphics is an important step of any optical character recognition sytem for the images containg both texts and graphics. In this paper, we have presented a novel text/graphics separation technique for business card images captured with a cell-phone camera. At first, the background is eliminated at a coarse level based on intensity vari...

متن کامل

Design of an Optical Character Recognition System for Camera-based Handheld Devices

This paper presents a complete Optical Character Recognition (OCR) system for camera captured image/graphics embedded textual documents for handheld devices. At first, text regions are extracted and skew corrected. Then, these regions are binarized and segmented into lines and characters. Characters are passed into the recognition module. Experimenting with a set of 100 business card images, ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1003.0642  شماره 

صفحات  -

تاریخ انتشار 2010